Motivic decomposition of anisotropic varieties of type F4 into generalized Rost motives
نویسنده
چکیده
We prove that the Chow motive of an anisotropic projective homogeneous variety of type F4 is isomorphic to the direct sum of twisted copies of a generalized Rost motive. In particular, we provide an explicit construction of a generalized Rost motive for a generically splitting variety for a symbol in K3 (k)/3. We also establish a motivic isomorphism between two anisotropic non-isomorphic projective homogeneous varieties of type F4. All our results hold for Chow motives with integral coefficients.
منابع مشابه
Chow motives of twisted flag varieties
Let G be an adjoint simple algebraic group of inner type. We express the Chow motive (with integral coefficients) of some anisotropic projective G-homogeneous varieties in terms of motives of simpler G-homogeneous varieties, namely, those that correspond to maximal parabolic subgroups of G. We decompose the motive of a generalized Severi-Brauer variety SB2(A), where A is a division algebra of d...
متن کاملConstructible motivic functions and motivic integration
1.1. In this paper, intended to be the first in a series, we lay new general foundations for motivic integration and give answers to some important issues in the subject. Since its creation by Maxim Kontsevich [23], motivic integration developed quickly and has spread out in many directions. In a nutshell, in motivic integration, numbers are replaced by geometric objects, like virtual varieties...
متن کامل4 CONSTRUCTIBLE MOTIVIC FUNCTIONS AND MOTIVIC INTEGRATION by Raf
1.1. — In this paper, intented to be the first in a series, we lay new general foundations for motivic integration and give answers to some important issues in the subject. Since its creation by Maxim Kontsevich [20], motivic integration developped quite fast and has spread out in many directions. In a nutshell, in motivic integration, numbers are replaced by geometric objects, like virtual var...
متن کاملFrom Exceptional Collections to Motivic Decompositions via Noncommutative Motives
Making use of noncommutative motives we relate exceptional collections (and more generally semi-orthogonal decompositions) to motivic decompositions. On one hand we prove that the Chow motive M(X )Q of every smooth and proper Deligne-Mumford stack X , whose bounded derived category D(X ) of coherent schemes admits a full exceptional collection, decomposes into a direct sum of tensor powers of t...
متن کاملMotivic construction of cohomological invariants
The norm varieties and the varieties with special correspondences play a major role in the proof of the Bloch-Kato Conjecture by M. Rost and V. Voevodsky. In the present paper we show that a variety which possesses a special correspondence is a norm variety. As an unexpected application we give a positive answer to a problem of J.-P. Serre about groups of type E8 over Q. Apart from this we incl...
متن کامل